Telegram Group & Telegram Channel
Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents [2024]

Наткнулся на ещё одну работу, в которой обучают модель-алгоритм. Её используют тут же для решения RL-задач, с результатами, по графикам сильно превосходящими VSML.

Авторы придерживаются тех же базовых принципов - мало мета-параметров (обучающихся генетикой), большое скрытое состояние. Различие в том, в какую именно архитектуру всё это запаковано. У VSML это несколько "слоёв" LSTM, сцепленных, как обычная нейронная сеть, со связями вперёд и назад.

В данной работе авторы используют более гибкую схему:

1) Есть 3 вида нейронов - входные, скрытые и выходные
2) Каждый входной нейрон может быть связан с каждым скрытым, каждый скрытый с каждым выходным
3) Перед началом обучения (то есть внутри эволюционной итерации) сэмплируются бинарные маски IxH и HxO, обозначающие наличие связи между каждым input и hidden, а также между каждым hidden и output.

А что, собственно, обучается? Чем является в данном случае "нейрон"?

Каждый нейрон принимает на вход векторы сигналов, складывает их и получает свой "Pre-neuron". Далее он домножается поэлементно на вектор w и получается post-neuron. После этого pre-neuron, post-neuron и награда из среды подаются в GRU, которая выдаёт дельту для вектора w.

Вектор w у каждого нейрона свой, а вот веса GRU у всех скрытых нейронов одинаковые. То же и с входными, и с выходными группами, но у каждой группы своя GRU.

Мне лично нравится, что такая плотно связанная сеть нейронов позволяет легко пробрасывать информацию по всей модели и быстрее обучаться своей задаче. Она содержит ещё меньше априорных допущений, чем предыдущий подход, что соответствует выводам из Bitter Lesson. Прорыв в итоге совершит подход, лучше всего балансирующий между гибкостью и эффективностью исполнения на современных GPU - иначе он падёт жертвой hardware lottery.

Из минусов статьи - нет кода, нет meta-testing (хотя сомнений в успехе у меня нет), нет описания затраченных на обучение ресурсов.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/179
Create:
Last Update:

Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents [2024]

Наткнулся на ещё одну работу, в которой обучают модель-алгоритм. Её используют тут же для решения RL-задач, с результатами, по графикам сильно превосходящими VSML.

Авторы придерживаются тех же базовых принципов - мало мета-параметров (обучающихся генетикой), большое скрытое состояние. Различие в том, в какую именно архитектуру всё это запаковано. У VSML это несколько "слоёв" LSTM, сцепленных, как обычная нейронная сеть, со связями вперёд и назад.

В данной работе авторы используют более гибкую схему:

1) Есть 3 вида нейронов - входные, скрытые и выходные
2) Каждый входной нейрон может быть связан с каждым скрытым, каждый скрытый с каждым выходным
3) Перед началом обучения (то есть внутри эволюционной итерации) сэмплируются бинарные маски IxH и HxO, обозначающие наличие связи между каждым input и hidden, а также между каждым hidden и output.

А что, собственно, обучается? Чем является в данном случае "нейрон"?

Каждый нейрон принимает на вход векторы сигналов, складывает их и получает свой "Pre-neuron". Далее он домножается поэлементно на вектор w и получается post-neuron. После этого pre-neuron, post-neuron и награда из среды подаются в GRU, которая выдаёт дельту для вектора w.

Вектор w у каждого нейрона свой, а вот веса GRU у всех скрытых нейронов одинаковые. То же и с входными, и с выходными группами, но у каждой группы своя GRU.

Мне лично нравится, что такая плотно связанная сеть нейронов позволяет легко пробрасывать информацию по всей модели и быстрее обучаться своей задаче. Она содержит ещё меньше априорных допущений, чем предыдущий подход, что соответствует выводам из Bitter Lesson. Прорыв в итоге совершит подход, лучше всего балансирующий между гибкостью и эффективностью исполнения на современных GPU - иначе он падёт жертвой hardware lottery.

Из минусов статьи - нет кода, нет meta-testing (хотя сомнений в успехе у меня нет), нет описания затраченных на обучение ресурсов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/179

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Knowledge Accumulator from tr


Telegram Knowledge Accumulator
FROM USA